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TECHNICAL NOTE 2726

ON THE APPLICATION OF TRANSONIC SIMILARITY RULES

By John R. Spreiter
SUMMARY

The transonic aerodynamic characteristics of wings of finlte span
are discussed from the point of view of a unified small perturbation
theory for subsonic, transonic, and supersonic flows about thin wings.
This approach avoids certain embiguities which appear if one studies
transonic flows by means of equations derived under the more restrictive
assumption that the local velocities are everywhere close to sonic veloc-
ity. The relation between the two methods of analysls of transonic flow
is examined, the similarity rules and known solutions of transonic flow
theory are reviewed, and the asymptotic behavior of the 1ift, drag, and
pitching-moment characteristics of wings of -large and small aspect ratio
1s discussed. It is shown that certain methods of deta presentation are
edvantageous for the effective display of these characteristics.

INTRODUCTION

The- small perturbation potential theory of transonic flow proposed
apparently independently by Oswatitsch and Wieghardt, Busemsnn
and Guderley, von Kérmen (references 1 through 6), and others is now
supplying a rapldly increasing fund of information regarding transonic
flow about serodynamic shapes. Solutions have been given recently for
the flow around symmetrical nonlifting airfoils at both subsonic and
supersonic speeds in papers by Guderley and Yoshihara, Vincenti
and Vagoner, Cole, Trilling, Oswatitsch, Gullstrand (references T
through 14), and others. In the’ agplication of these.results to specific
examples, two items of theoretlical interest have been noted (see, in
particular, references 8, 15, and 16): (a) The theoretical results
appear to be applicable at Mech numbers far removed from 1 even though,
in most cases, the results have been obtained from equations valid only
in the immediate neighborhood of sonic speed. (b) In the application
of theoretical results to specific examples at Mach numbers other than 1,
it has been noted that certain ambiguities exist in the theoretical
determination of aerodynamic quantities. It is one of the purposes of
this report to investigate these two points. This is accomplished by
examining transonic flow from the point of view of equations
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that are valid throughout the Mach number range rather than only in the
neighborhood of sonic speed. Such an approach emphasizes the relation ;
between the roles of linear -theory and of nonlinear theory in the tran-

sonic range.

The similarity rules provided by the theory (references 5, 6,
and 17 through 20) have also proved to be useful in the correlation and
interpretation of experimental data. It is with the latter aspect of
the transonic-flow problem that the present paper is primarily concerned.
In this paper, the similarity rules and their application to the specific
problem of concise presentation of 1ift, drag, and piltching-moment char-
acteristics of wings are given in detail. The known solutions of two-
dimensional transonic flow are reviewed and the asymptotic behavior of
the aerodynamic characteristics of wings of large and small aspect ratios
is examined. It 1s shown that certain methods of ‘data presentation are
advantegeous for displaying these characteristics.

SYMBOLS
A aspect ratio
K [(7+2)(t/e)1*/%
a speed of sound‘
a5 speed of sound in the free stream
a¥ critical speed of sound 3
b wing semlspan
Cp drag coefficient
CDO drag coefficient of symmetrical nonlifting wings
ACD contribution to drag coefficient due to 1ift
| S
(ACp/a®) [(7+1)(t/e) 1*/°[acp/a®]
cL, 1ift coefficient f
N 1/3 '
(Cp/a)  1(r+1)(t/e) 17/°[cr/al
Cm pitching-moment coefficient

oy
(Ca/a)  [(741)(t/c) 1*/°[Cn/a ]

CP rressure coefficlent




NACA TN 2726 . ‘ 3

C.P.

C
Cdy

<G,
Acg

(Aca/e®)

C1

(cy/a)

XyY,2

Xe.p.

(z/e)

center-of-pressure function
wing chord

section drag ébefficient of symmetricel nonlifting airfoils
[(7+1)/%/(£/e)%/®] cq,

contribution to section drag coefficient due to 1lift
[(7+1)(t/c)1/®[Aca/a®]

gection 1ift coefficient

[(7+1)(t/)1*®[cy/al

drag function

drag function for symmetrical nonlifting wings

drag due to lift function

section drag function for symmetrical nonlifting airfoils
section drag due to 1ift function

1ift function

section 1ift function

pitching-moment function.

section pitching-moment function

free-stream Mach number

pressure function

stretching factors defined in equation (BT)

maximum thickness of wing

free-gtream velocity

1

Cartesian coordinates where x extends in the direction of
the free-gtream velocity -

distance from wing leading edge to center of pressure

ordinates of wing profiles in fractions of chord
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a angle of attack

a af(t/e)

r y +1

4 ratio of specific heats, for air 7y = 1.k

A arbltrary ;onstant

£ (Mo2-1) /[ (7+1)(£/e) 17/

T ordinate-amplitude parameter

o velocity potential

@ perturbatién velocity potential
Subscripts

1 values given by linear theory

w7 conditions at the wing surface

FUNDAMENTAL CONCEPTS

Basic Equations

The quasi-linear partial differential equation satisfied by the
velocity potential @ of steady isentropic flow of a perfect inviscid
gas can be expressed in the form '

0.2. - ® 2 . . o2 P
X .y Z J

O+, 0 0,0
o Y2 Oyz — 2 = X 0zx =0 (1)
a2 a2 )
where the subscript notation is used to indicate differentiation

and a is the local speed of sound given by the relation

a2 = a2 - Zé} 0,2 + o2 + 9,2 - UO?) (2)
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In this latter equation Uy and a, are, respectively, the velocity and
speed of sound in the free stream and 7 is the ratio of specific heats

(for air y=1.k). | A
Introducing the perturbation velocity potential @, where
| @ = -Ux + & ‘ (3)

it is possible to express equation (1) in terms of the derivatives of @
as follows: . :

(P ) \
—-}% [(7+1)U°qjx + 74‘-3-1 (an + -7"2‘3: q)y2+ CP22>]+
P ] S A3 2 2 7+l 2:|
oz (7 D0Px* T(‘Px *“’z) HRrYRe AN
Ny ? I -1 o +1
<1'M02) PxxtPyytPza= -;% L(-?"‘l)Uoch'i‘ 12—' CPx2.+cpy2> + ZE— cpza:] + > (1)
. o] . ‘

Py

If it is assumed that all perturbation velocities and perturbastion
velocity gradients (represented by first and second derivatives, respec-
tively, of @) are small and that only the first-order terms in small
quentities need be retained, equation (U4) simplifies to the well-known
Prandtl-Glauert equation of linear theory

| (:L-Mo'2 )cp;x + O + ®, =0 (5)
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wvhere the free-~-stream velocity is

Z directed along the positive x axis
‘ as shown in sketch (a) and where M,
U 4 is the Mach number of the free stream.
~§.=L It is well-known that equation (5)
leads to useful results in the study of

subsonic and supersonic flows about

thin wings and slender bodies but that
\\\\\\\\ it is incapable, in general, of treat-

<:§::::> ing transonic flows. The failure of
\\\\\\\ linear theory in the transonic range is

\Q$§§§§§S:\ evidenced by the calculated value of @y

X growing to such magnitude that it can

no longer be regarded as a small quan-
(a) tity when compared with U..

Second-order theory for thin wings would involve solution of the
equation

N\ | 1 -]
<1"Moa> Pxx + Pyy + Ppy = Mo? [—7; Px Pxx + 7{]0 P (Ryy+Pzz) +
o

-U% (9y Oxy + @y foz)] (6)

Actually, we are interested in retaining higher-order terms only to

the extent that is necessary to allow the study of transonic flow.
Exemination of the known characteristics of transonic flow fields indi-
cates that the first term on the right can often become of importance
and should be retained. The remainder of the terms on the right can
never become large for transonic flows about thin wings at small angles -
of attack and can be safely disregarded. Furthermore, since the right-
hand side is merely an approximation to allow the treatment of transonic
flows and rapidly diminishes in magnitude as My departs from unity,
the equation may be further simplified without much, if any, loss in
accuracy by setting My = 1 1in the coefficient of the term on the right.
(If one does not wish to make this added approximation, the results of
this paper should be altered by replacing 7 + 1 with M2(y+1)
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wherever it occurs.) The simplified equation® is

1
<1'M02> Pux + Pyy + Pz = 7-; Px Pxx (1)

In addition to satisfying the differential equation, the perturba-~
tion potential must provide flows compatible with the following physical
requirements: (a) The flow must be uniform far ahead of the wing and
(b) the flow must be tangential to the wing surface. Therefore, the
following boundary conditions are to be specified for the perturbation
potential:

at X = - ®

((px)o = (q)y)o = (CPZ)O =~0 (8)

at the wing surface, W
1 ' :
T @), = (Qza0 (9

where (BZ/Bx) refers to the local slope in the x direction of the wing
surface. Furthermore, it is consistent with the assumption of .small
disturbances to satisfy the second boundary condition on the two sides
of the xy plane rather than on the wing surface. Equation (9) is
therefore replaced by

1 = =T Cl | 3
T (95),_, = (dz/3x) = NETo) f,<c: b) , (10)

1Although equation (7) is vaelid throughout the Mach mumber range, it is
not the sppropriate equation for the treatment of the "pseudo tran-
gsonic" flow fields which are to be found around three-dimensional
swept wings (consider, for instance, an infinite yawed wing) through
a limited range of supersonlc Mach numbers. Since these flows are
characterized by shock waves standing essentislly normal to
the xy plane but oblique to the free-stream direction, equation (6)
can be simplified only to the followlng:

1 \
<l-Moz>‘ Py + Pyy + Pgz = <7+ Px Pxx +

7=-1
—CPX (Pyy U CPy q’;q-

The discussilon of these problems 1s outside the scope of the present
report. :
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where the shape of the wing profile is given by

(z/c) = T2(x/c, y/v) (11)

where f(x/c, y/b) represents the ordinate-distribution function and T
is an ordinate-amplitude parameter.® 1In order to obtain unique and physi-
cally important solutions, it is necessary to assume the Kutta condition
that the flow leaves all subsonic trailing edges smoothly. To be com-
plete, consideration should also be given to the conditions of transition
through shock waves. This point has been discussed by Guderley (refer-
ence 4) and by Vincenti and Wagoner (reference 9). They indicated that
(a) equation (7) is valid even if shock waves are present, and (b) the
shock conditions agree with the similarity rules. In this report, the
similarity rules are derived in appendix B and their compatibility with
the shock relations is demonstrated in appendix C.

Upon solving the above boundary-falue problem for the potential, one
.may determine the pressure coefficient by means of the formula

C,6=- 2 o T (19)

Q

Although Oswatitsch, Berndt, and Gullstrand (references 12, 13, 1k,
19, and 20) have previously investigated transonic-flow phenomenon by
means of equations derived by assuming that all velocities are small per-
turbations around the free-stream velocity Uy as is done above, most
other workers have used equations derived under the more resgtrictive
assumptions that all velocities are small perturbations around the criti-
cal velocity of sound a¥*. In the latter scheme, the perturbation poten-
tisl is defined by (see, for instance, reference 6 or 18)

Q= -a¥x + O (13)

and the resulting differential equation for @' is

rH
. a¥

R (1%)

The corresponding boundary conditions are specified as follows:

2Note that, in general, a variation of T represents a simultaneous
change of the thickness ratio, camber, and angle of attack. In the
special case of g nonlifting wing having symmetrical sections, T is
proportional to the thicknese ratio; for inclined flat-plate wings of
vanishing thickness, T 1is proportional to the angle of attack.
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at x = - o
(013'x )o = Uoma* % - 7—% 1-M02), (@4), = (@), =0 | (15)
at the wing surface .
(93), _ & &*7 a—(f7c_) £ (f, %’) (16)

where the shape of the wing profile is still given by equation (11).
The equation for the pressure coefficients 1s epproximated similarly,
thus,

EEFILRNCIN an

The two statements of the equations for transonic flow are clearly
identical at a Mach number of unity. Although the derivation of the

a* equations requires that the free-stream Mach number be very close to
unity, these equations have been used with good success by a number of
authors to calculate the aerodynamic forces on airfoils at Mach numbers
considerably removed from unity. In so doing, it has been suggested that
it might be preferable to use more accurate relations for the pressure
coefficient or the boundary conditions; for instance, it has been suggested
that a* be replaced with U, in the equation for Cp. This matter
has been discussed at length in references 8, 15, and 16. Since no
restriction requiring the Mach number to be near unity is made in the

Uo analysis, it 1s informative to examine the relation between the
results of the a* and the U, analyses. This is done in appendix A.
It is found that the a* analysis, if performed in a completely con-
sistent manner using equations (135 through (17), yields values for

that are identical to those given by the more general Uy analysis.

This somewhat paradoxical result is achieved through the action of a
number of compensating effects and only applles to the pressures and the
forces and moments derivable therefrom. It should be noted, in particu-
lar, that the values of the local velocities and Mach numbers provided
by the a* analysis for flows having free-stream Mach numbers other than
unity are in error. Throughout the réemainder of this report, the dis-
cussion will be based on the U, analysis.

It is important to recognize that wing theory based on equation (7T)
is valid for all Mach numbers below the hypersonlc range. At subsonic
and supersonic speeds, equation (7) is of the same order of accuracy as
the Prandtl-Glauert equation of linear theory (equation (5)) although more
difficult to solve. At My = 1, equation (7) is identical with equa-
tion (14), now widely used in the study of transonic-flow problems.
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On the other hand, there is no a priori method for determining
whether or not a solution of the equations of linear theory will be
“valid in the transonic range. One can only decide by solving the prob-
lem under the assumptions of linear theory and' then inspecting the magni-
tudes of the terms, particularly of ¢y, to see whether or not they can
be regarded as small quantities. If the terms are sufficiently small,
the linear-theory solution is presumed valid even though the Mach number
mey be near unity. Linearized-theory solutions have been obtained for a
great number of practical wing problems and their behavior in the tran-
sonic range is now well known. To review briefly: For unswept wings of
infinite span, linear theory indicates that the magnitude of @, on the
surface of a given airfoil is proportiomal to 1// |1 - M 2|; consequently,
Py approaches infinity as M, approaches unity and the theory is
clearly inapplicable. For wings of finite span, however, the perturba-
tion velocities may be large or small at sonic velocity, depending on
the particular problem as discussed in detail in reference 21. Specifi-
cally, for three-dimensional 1lifting surfaces of zero thickness, the
velocities remain finite everywhere except at the leading edges, their
magnitudes generally increasing with increasing aspect ratio and angle
of attack. For wings of nonzero thickness, however, @y generally
becomes large logarithmically as 1 - M 2 approaches zero; consequently,
linear theory is inapplicable within some Mach number range surrounding
unity.

Summarizing, linear theory is applicable to 1lifting surfaces of
small or moderate aspect ratio at all transonic speeds, but fails for
wings of finite thickness within a range of Mach number surrounding
unity. The range of inapplicability diminishes to zero as the aspect
ratio, thickness ratio, and angle of attack of the wing tend to zero.

In treating transonic flows for which linear theory is applicable,
it is often advantageous to consider the special case of sonic flow
(Mg = 1) separately. Equation (5) for the perturbation potential then
reduces to a particularly simple form

Pyy * Pgg = 0 (18)

Solutions of equation (18), in conjunction with the boundary conditions
given by equations (8) and (10), are identical to those of linear theory
found by solving equation (5) and subsequently setting M, = 1, but can
be obtalned with much less effort. Since, in addition, the results of
this simple theory, now generally known as slender-wing theory, are also
applicable to low-aspect-ratio 1lifting surfaces throughout the
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entire Mach number range,® a considerable number of solutions of slender-
wing theory have been presented in the_last few years. (See refer-

ences 22, 23, and 24.) These results are, of course, applicable to flows
at My = 1 to exactly the same extent as the results of linear theory.

Similiarity Rules

In reference 6, von Kirmén derived similarity rules for the pressure
distribution, lift, drag, and pitching moment of airfolls in transonic
flow using equations (13) through (17). The same equations were used in
reference 18 to determine the transonic similarity rules for wings of
finite span. The corresponding similarity rules of linearized subsonic
and supersonic wing theory were also derived and compared with the tran-
sonic similarity rules in the latter reference. It was shown that the
gimilarity rules of linear theory contain an arbitrary parameter and can
be expressed in many forms, one of which coincides with the similarity
rules of transonic flow. |

It follows from appendix A and is demonstrated in detail in appen-
dix B that the similarity rules derived from equation (7) are identical
to those previously given in references 6 and 18. Thé new derivation,
however, possesses the advantage of being based on a single statement of
the problem of wing theory that is uniformly valid at subsonic, tran-
sonic, and supersonic speeds. The similarity rules for Cp, Cyp, Chs
and Cp were stated in reference 18 to be

2/3 ,/l_ 2
%=;——P[———M°—— J1-M2 a5 258 (19)

(y+1)1/3 [ [(y+1)7]2/3’

M2
J T g | WAME L TE (20)

(7+1)1/® [(y2) 712/

B3This dual role of slender-wing theory stems from the two ways that one
can reduce equation (5) to equation (18). One can neglect the term
(1 - Mo3) Pyy in comparison with @yy and @y, either because Qxx
is small, as may be the case with low-aspect-ratio wings or slender
bodies, or because (1 - My®) is zero, provided @xy does not become
very large in comparison with the other velocity gradients @y
and ¢,,. The application of this theory to slender wings
antecedes the application to flows with sonic free-stream velocity,
hence the name slender-wing theory.




e e e e o

12 NACA TN 2726

-

oy = T2/3 M N 1-Mo2 - ,/i——MozA (21)

(7+1)1/3 [(y+1)7]127%’

)

Cp = —Tots 1Mo T wE | (22)

(y+1)1/3 D [(7+1)T]l/3’

J
where the geometry of related wings is given by equetion (11):

(z/e) = T£(x/c, y/b) ‘

Equations (19) through (22) are functional equations. For example,
equation (19) is to be interpreted as stating that the pressure coef-
ficient Cp is equal to T2/3/(741)'/® times some function P of a
number of specified parameters. The foregoing equations have been
written for flows where My < 1. If My = 1, the radical /1 - M2

should be replaced with ,/Mp2 - 1. The functions P, L, M, and D are
different, however, for subsonic and supersonic flow. Consequently,
subsonic flows may be related to other subsonic flows by the similarity
rules, but not to supersonic flows, and conversely.

It is important to recognlze that the similarity parameters may be
combined or regrouped in any manner whatsoever, provided the same number
of independent parameters is always retained. For instance, in much of
what follows, it will be found desirable to use the gquare of
VAR Moa/[(7+l)1']l/3 and to replace »/1 - Mo2 A with a new parame-
ter [(7+1)7]1/3 A obtained by dividing /1 - M2 A by
1 = Mo®/[(7+1)T11/3, 1In terms of these parameters, the similarity
rules are

— M=l ., 12/o8; X ¥
®T (r+1)t/3 i [(7+1)71273° [Cr)d/%s 2 & (23)
- Mo™-1 1/3 ‘
Cy, = (741)1/3 L { [(7’+l)'17]2/3’ [(7+1)7] Ar (2h)
; J
T2/3 [ M2-1 .
n = A N Tomeers Lo Al (25)
) J
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+5/3 D | My2-1

Cp = ——— PR~ SE——
(r+#1)1/8- | [(y+1)7]3/3

> [(r+1)7]1/3 A (26)
whereln the geometry of related wings is again given by equation (11).
Slope of Pressure Curve at My = 1

Liepmann and Bryson (reference 15) have recently determined the
slope of the CP versus Mp curve at M, = 1 by means of the following
simple and intuitive considerations. It is a well-known fact that, at
slightly supersonic Mach numbers, the detached bow wave is far away
from the airfoil and negrly normal. It is also well known that the Mach
number downstream of a wesk normal shock is as much below unity as the
Mach number upstream is above unity. Consequently, the pressure or Mach
number distribution on the airfoil should be independent of Mach number
in the nelghborhood of My = 1. The slope of the Cp versus M, curve
at Mp = 1 can then be found by simple and direct means and is the fol-

lowing for thin airfoils:
(ﬂﬁ) - hi (27)
WMo/ ppy=r 77 «

Vincenti and Wagoner (reference 8) have found by means of similar
conslderations that a more exact relation is given by

GL_%)MO:l 7 t 177 = <CP>M0=1 (2§)

Since the above derivation is based to a certain extent on physical
reasoning which may be either more or less exact than small perturbation
transonic theory, it is of interest from the present point of view to
determine the equivalent result from the model of transonic flow provided
by equation (7). The result, obtained by a similarity type of analysis
and presented in detail in appendix D, is just that which would be found
if one actuaslly solved equation (7).

It is found that a solution for Mach numbers slightly less than
unity satisfies the differential equation and the boundary conditions at
the wing surface for flows with Mach numbers slightly greater than unity.
However, the velocity perturbations do not go to zero infinitely far
ahead of the wing, but go instead to the value corresponding to that
agsociated with a normal shock wave. If it can be assumed that the bow
wave approaches a normal shock wave standing infinitely far ahead of the
wing at a sufficiently rapid rate as the free-stream Mach number
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approaches unity, the slope of the Cyp versus My curve at My =1 is as
given by equation (27). Whether or not this is a permissible assumption
for any given case still remaing an unanswered question. Intuitive con-
slderations suggest that the results are probably applicable to symmet-
rical airfoils at zero or infinitesimal angles of attack but not to air-
foils at larger angles of attack or to wings of finite span.

APPLICATIONS

Fundamental Hypotheses and Principles

The remainder of this report is principally concerned with the
deduction of the qualitative, and to some extent guantitative, character-
istics of thin wings in transonic flow by means of simple logical con-
siderations based primarily on the similarity rules together with the

following hypotheses:

(2) Nonlinear theory based on equation (7) is applicable to all
problems. :

(b) Linear theory based on equation (5) is valid for all wings at
Mach numbers either appreciably below or above unity.

(¢) Linear theory is valid at all Mach numbers, except possibly
very near unity, for wings of small aspect ratio.

(d) The differential pressures between the upper and lower surfaces
of a wing having symmetrical airfoil sections are propor-
tional to the angle of attack for at least a small range of
angles about zero.

(e) The slope of Cp versus My at Mo = i, defined by equa-
tion (27), is applicable at least to symmetrical airfoil
sections at zero or infinitesimal angles of attack.

The consequences of the foregoing statements will be consistently
pursued in the following sections in the discussion of the aerodynamic
characteristics of alrfoils and complete wings. Throughout, the analysis
will be restricted to wings having symmetrical profiles. The decision to
lgnore the influence of camber is based not only on the desire for sim-
plicity but on the fact that symmetrical airfoils appear experimentally
to have superior aerodynamic characteristics in the transonic range.
Whenever specific results are to be used to illustrate the statements,
they will nearly always be for symmetricel-wedge or double-wedge profiles
and for wings of triangular plan form. This choice is dictated by the
present availability of theoretical results.
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The basic principle in the following analysis is to express the
similarity rules in such forms that the 1ift, pitching-moment, and drag
coefficients can be studiled for limiting values of the parameters with
no chance for ambiguity due to indeterminate forms. In this respect,
the statement of the similarity rules provided by equations (23)
through (26) will be found particularly useful.

The similarity rules thus formulated are totally equivalent to those

given by equations (19) through (22) but possess three outstanding advan-
tages:

(a) The indeterminacy at M, = 1 resulting from two parameters
simultaneously vanishing is removed.

(b) The squaring of the first parameter avoids the necessity of
changing parameters as sonic speed is passed.

(c) The use of the parameter [(7+1)7]*/2 A rather than
~1 - Mo® A aids in distinguishing the regimes in which
linear theory is applicable in the transonic range from
those in which nonlinear theory must be used. Thus as
[(7+1)7]1/3 A approaches zero, linear theory is always
applicable provided, in some cases, that My is not pre-
cisely equal to unity. On the other hand, as [(y+1)7]1/3 a
becomes large, linear theory is not applicable in the tran-
sonic range and nonlinear theory must be used.

Pressure Drag of Symmetrical Nonlifting Wings

The similarity rule for the pressure drag coefficient of symmetrical
nonlifting wings having profiles given by

- (2/e) = (t/e) £(x/e, y/b) (29)

is obtained from equation (26) by identifying T with t/c, the thickness
ratio, -

N 70 A SR e
Po = 1) 78 %\ [(r41) (v/2) 127

3’ [(7+1)(t/c)1*/3 A =

t/c 5/3 ~ )
%}'{I;'ﬁg Do (Bgs &) (30)
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Therefore, drag results for symmetrical nonliftingmwings should be
presented by E}ptting the variation with §O and A of a generalized drag
coefficient CDo defined as follows:

— 1/8 T A
%o = (2057 o = Do (£, B e

At Mach numbers sufficiently removed from unity for linear theory
to apply, Cp, must be independent of 7 since 7y does not appear in
either the differential equation or boundary conditions of linear theory.
Therefore,

(ono), = L2~ LY F s 21| |/
Po)1 T (a3 | [(3+1) (v/c) 1273 1 [(7+1)(t/c)12/2
[(7+1)(+/e)1*/® & =_(~/%;)2_1‘| Do, (JIMOZ-il A), (32)

where 1t should be recalled that IDOZ is a different function for sub-
sonic and supersonic flow. Equation (32) is equivalent to the extended
Prandtl-Glauert rule. For subsonic flow, D'Almbert's paradox requires
that the drag be zero; therefore, for all wings,

—
(Cp,), = 05 (cp,), =0 (33)
Mo<1 £o<o0

For supersonic flow, wave drag exists which depends on «/ M02 - 1A

as well as on the plan form and airfoil section. The general functional
relation for the drag coefficient of a family of affinely related wings
at zero angle of attack, as given by linear theory, is

(t/c)? — - '
(Cp.). = =22 D, (/4021 a), (Cpy), = &5~*/2D,, (¢.*/?%) (34)
MZ>Zi (—MOE_l 01( > gCo)>76 o OZ (o}

Wings of infinite aspect ratio.- For wings of infinite span (or
airfoils), equation (32), representing the functional relation of linear
theory for the drag coefficient, reduces to the following:




3U

NACA TN 2726 | . 17

(t/c)® X const., (356) _ const.

(cao), - L - comst
Mo>21 Mp®-1 3 0>%: 23

where the value of the constant depends on the shape of the airfoil.
Numerous experimental data show variations consistent with equation (35)
at Mach numbers greater than about that of shock attachment. At Mach -
numbers closer to unity, however, the theoretical values provided by
thls equation are unreliable. It 1s evident from inspection of the
results of linear theory itself that such a failure occurs, since the
perturbation velocitles assumed to be small in the derivation of the
equations are found to become infinitely large as the Mach number
approaches unity. It is apparent, therefore, that it is necessary to
resort to nonlinear theory for the calculation of the drag of airfoils
in the transonic speed range. \

(35)

A similarity rule for the section drag coefficient of symmetrical
nonlifting airfoils which 1s valid throughout the Mach number range may
be obtained from equation (31) by setting Py equal to infinity.

— 1/3 1/
L G ) Gt b

At a Mach number of unity, the similarity parameter £, vanishes
and the function d, (¢,) is a constant.

(Eab) = do (0) = conmst., (edg) = : X const. (37)

g o=0 . :Mo=l ( 7+l t/

indicating that the sectlion drag coefficlents of affinely related air-
folls are proportional to the five-thirds power of thelr thickness
ratios. If hypothesis (e) is accepted; the variation of cd, with M,

at Mg =1 1s found to be zéro for complete airfolls

IO MO CYRE

Mo=1 . p 3 O?O

Since calculations have been made of the drag in transonic flow of
gimple symmetrical sections at zero angle of attack it is not necessary
to speculate further regarding the variation of cd with £&,. At
present, however, the profile for which the most complete information
exists is not a complete airfoil but is a single-wedge section followed
by a straight section extending infinitely far downstream. In accord
with some of the original papers on this subject, the single-wedge section

S L S
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is considered as the front half of a symmetrical double-wedge airfoil
having & chord c. The velue of t/c in &3, and £, is defined accord-
Ingly. Solutions for this section obtained using the nonlinear small
perturbation theory have been glven for flows having subsonic, sonic, and
supersonic free-stream velocities, respectively, by Cole (reference 10),
Guderley and Yoshihara (reference T7), and Vincenti and Wegoner (refer-
ences 8 and 9). The linear-theory solution for pure supersonic flows
has been given by Ackeret (reference 25). The sglope of the drag curve
at My =1 is no longer zero as indicated for the complete airfoil by
equation (38) but takes on & positive value given originally by

Liepmann and Bryson (reference 15) and readily derivable from equa-

tions (27) and (38).

de bt deg
( i T = < ) -2 (39)
Ty+lc dg, ,
Mo*—l §0=O

All of these results are combined on a single graph in sketch (b). It

4T |
—=|= \ /—Vincenfi and
Single -wedge \ Wagoner
section do
Guderley and Yoshi/')ara——‘? ~~ \\\\
Lfepmcnn and Bryson Nonlinear theory
Cole ——=Linear theory
1
7ransonic === Supersonlic
-3 -2 -/ (7 / 2 3
) éo

may be seen that the preceding remarks concerning the relation of linear
theory and nonlinear theory and the slope of the drag curve at a Mach
number of unity are verified by this comparison.

An indication of the accuracy of the theory ls provided in
sketch (c), which shows the theoretical curve of sketch (b) together
with corresponding results obtained from wind-tunnel experiments by
Liepmenn and Bryson (references 15 and 16). The vertical lines through
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4
- ——
| Single-wedge ' o N
secfllon | d M*ﬂé #¢¢¢¢ ,
wedge semiangle / ¢y ] g
. < 4? : 2 / ¢ Y
. /{z'o.o - \—Theary \
\\
-2 -/ 0 / 2 3
(c) &

the experimental points indicate estimated accuracy of the data. Three
single-wedge models having semiapex angles of 4.5°, 7.5°, and 10° were
used in the teste. Thig figure 1llustrates the degree to which the
similarity rules are sble to reduce data from a family of profiles having
different thickness ratios to essentially a single curve.

The double-wedge airfoil has also been treated theoretically through-
out the entire Mach number range. Solutions for My < 1 have been given'
by Trilling (reference 11), for My = 1 by Guderley and Yoshihara
(reference 7), and for My > 1 Dby Vincenti and Wagoner (references 8
and 9). The results of their calculations are shown in sketch (d).

6 .
Liepmann and Bryson —\_‘r/—‘\—auderley and Yoshihara

\\ _~—Vincenti and
Trilling— . Wagoner
</ 4 N
\\
Double-wedge airfoll bg" = \\
uble-wedg 0
. e 2

Nonlinear theory

—/ ——=Linear theory

| ' Transonic :<— —= Supersonic
-3 -2 -/ 7] / 2 3
& |
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For My < 1, Oswatitsch has given approximate solutions for the
pressure distribution on symmetrical biconvex airfoils (references 12
and 13) and for the pressure distribution and drag on NACA four-digit
symmetrical airfoils (reference 13). This work has recently been
extended to several NACA 6-series airfoils by Gullstrand (reference 1k).
Their drag results are generally similar to those indicated at corre-
sponding Mach mumbers for the double-wedge section in sketch (d).

Wings of finite aspect ratio.- The similarity rules for wings of
finite aspect ratio are given by equations (31) and (32). Although no
essential simplification of the rules occurs for wings of small aspect
ratio, the range of applicability of linear theory increases as the
aspect ratio decreases. This point can be illustrated by considering
the results provided by linear theory in a specific case. A good example
to select for this purpose is that of the drag in supersonic flow of a
triangular vwing with symmetrical double-wedge airfoils. (See refer-
ence 26.) This particular choice was made fOor the following reasons:

(2) Solutions are known for all supersonic Mach numbers; (b) the double-
wedge airfoil discussed in the preceding sections corresponds to the
limiting case of the wing of very great aspect ratio. The drag results
provided for this wing by linear theory are presented in sketch (e).

. “:
- -_——J§::zr—4 @
| I A
& ' — | \
fo 4 ) 4 X R
EE \ / AN
u ; — \\‘\
s E:e S —
¢ \ A=/ S
~% 2 2 \\ i _/f
S \ - —_———j—_——
wo| N\ Puckert
R3S (linear theory)
—Nanlmear theory
- Incar theor,
00 2 3 (70 - / "; 3

The results of sketch (e) are presented in a different manner in
sketch (f£) JYherein CD is plotted as a function of £ for various
values of A as suggested by ejuation (31). For purposes of comparison,
the curves for the drag of airfoils (A—w) computed by both linear and
nonlinear theory are also included on the graph. As noted in the pre-
ceding section on airfoils, comparison of the results of linear theory
with those of mnonlinear theory for wings of A =~ shows that good
agreement exists for larger £, but that ‘at smaller ¢&,, the values
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predicted by linear theory become too large.

For wings of finite ﬁ,

only the results of linear theory are available. They also exhibit the

trend of indicating infinite drag as

Lo
range of £o in which the value of CD

1s the case for A = w. In general, EBO

diminishes with decreasing aspect ratio.

-]

approaches zero; however, the
is excessive is much less than
of wings of small aspect ratio.

The drag results of sketch (e) are presented in 8t111 another form
in sketch (g) in which is plotted the variation of CDO with K for

various values of £5. The princi-
pal merit of this method of plot-
ting is that it alds in distinguish-
ing the region where nonlinear theory
must be used from that where linear
theory may be useful. Thus the two-
dimensional nonlinear theory results
appear on the right of the graph
corresgponding to large K, whereas
the three-dimensional linear theory_
results_appear on the left for

small A. The filling in of the
remainder of the graph requires
either the solution of the equations
of three-dimensional nonlirear wing
theory or the use of experimental
data. It skould again be noted that
the present drag considerations apply
only to the pressure drag. Before
plotting experimental results in the
manner indicated, it is necessary to
first subtract the friction drag.

Lift

6 1 §
A | T
: V-
- -
4 <t
/1— =10
, /. LL-—-
e II‘ r g / { F———
‘ /’/,9’
/249’/
///
-—— Monlinear theory
/"f <O\——— Linear theory
0 -~ =1
(7] ! o 2 o
(@ A

Equation (24) indicates that-the similarity rule for the 1lift
coefficient of wings having profiles given by

(2/e) = 72(x/c, y/b)

is

Cr, =

e A e ¢ ot . S AR R At g R M i Y = e

/5 . Mo=-1
(y+1)2/3 [(7+1)7]2/3’

[(y+1)T]1/8 A}
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This equation has been the source of some confusion due to the multiple
role that T plays in determining the thickness ratio, camber, and angle
of attack. A more explicit statement of the similarity rule that is
useful for all wings having symmetrical profiles of nonzero thickness is
given by the following pair of equations:

- () (= E
(2/c) = (t/c)[f(x/c, y/o) t/c><c>] (10)
_ (&f)B s r Mo2- 1 | /8, & | _
* (7+1)1/® v [(7+l)(t/c)]2/:3’ [(7+1)(t/c) 1777 4, s
(8/e)3° ¢ (t0, K, Q) (41)
(741) 172

where the primes serve as a reminder that L and L' are different
functions of the parameters indicated. If hypothesis (d) is accepted,
C;, varies linearly with a for at least small angles of attack. It
is advantageous, therefore, to consider the 1lift ratio CL/a rather
than Cj, alone, thereby minimizing the influence of J.

o, 1 (t/c)3/® ~ o~ 1 " ~ o~
Lo = L'(t, &, @) = L"(t , &, o) (42)
@ (1)t o ) [(7+1)(t/c) 1%/ o? % 7

Therefore, 1ift results may be presented by plotting the variation
with &g, A, and o of a generalized 1lift ratio Cp/a defined as follows

(the primes on I, have been omitted for simplicity):

crfe = [(7+41)(t/e)1*/® (cr/a) = L (¢, &, @) (43)

Equation (43) shows that 057& depends upon three parameters, one
more than the number which can readily be treated on a simple plot.
Simplification can be gained, of course, by holding one of the parameters
constant for an entire graph. Results so presented are particularly
interesting for Eg= 0, (Mo=1); A=w, (A=w); and a=0, (0=0). The latter
scheme is especially good since experiments indicate that 1ift curves of
wings are oﬂEgg relg;ively straight lines at all Mach numbers. The
values of Cr/a at @ = O might, therefore, be expected to be good indi-
cations of the actual values for other &. The appropriate similarity
rule may then be written

(C]':7(\1,) =L (go, K: O) = Lo (§O, K) ()-lll-)
=0
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For cases where linear theory spplies (hypotheses (b) and (c)), two
statements can be made immediately which provide further informastion
about Cr/a: (2) (CL/a) mist be independent of 7, and (b) (CL/a)

must be independent of & by virtue of the superposition principle of
linear theory. Therefore, following the procedure used in equation (32)
gives

Lzl<*/|—M<:Zﬁ Aj’ <9:L>z =/_|l§_;-l-

where again L is a different function for subsonic and supersonic flow.

(&) 7 (D).
5)

Wings of infinite aspect ratio.- For wings of infinite aspect ratio,
the functional relation of linear theory for the lift ratio given by
equation (U45) reduces to

(ﬁfl - —const. _ <}§;> . const. (L46)
a Y - A\ a Y v

) l IM02'1| L Igol

Solutions of the equations of linear theory show that the value of the
constant is 2x for subsonic flow and four for supersonic flow. Exami-
nation of these results indicates that they are valid at Mach numbers

appreciably less than or greater than unity, but are invalid for Mach num-
bers near 1.

A similarity rule for the section 1lift coefficients of a family of

affinely related symmetrical airfoils which is wvalid throughout the Mach
number Tange may be obtained from equation (43) by setting R =w,

(er/a) = Li(tg, = &) = 1 (£g, 3) (47)

At a Mach number of unity, Eo 1s identically zero and the
expression for the 1lift ratio becomes

7o = y @), @) = L 55 1 (05 y; 48
o, st @ e T (o5) e

Equation (48), when considered together with hypothesis (d), indicates
that at sonic speed the lift-curve slope at zero angle of attack of air-
foils of a single famlly varies inversely as the cube root of the thick-
ness ratio. Note that as the thickness ratio goes to zero, the value of
the lift-curve slope at zero angle of attack is Indicated to become
infinite just as is indicated by equation (46) to be the case according
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to linear theory. On the other hand, for very large E, it is plausible
that the thickness ratio does not have any effect on c¢;; therefore cy
is proportional to the two-thirds power of « <for large d. If hypothe-
sis (e) is acceptable, that is, if it can be assumed that the detached
bow wave in front of a symmetrical airfoil at an infinitesimal angle of
attack is a normal shock wave so that (dCP/dMO) - is given by equa-

tion (27), the lift-curve slope at zero angle of attack is stationary
with Mach number at M, = 1, since

[_51_ <°1 ] jf (dCP ax_ b [fax_ [_91__ <i£ ] - 0 (19)
Mo c 7+l c dés \ @
MO=1 - GFCE =0

0

At present, the only available solution of the nonlinear equations
for transonic flow about lifting airfoils is that of Guderley and Yoshihara
(reference 27) for the case of sonic flow about a symmetrical double-
wedge airfoil at an infinitesimal angle of attack. They found that

(ey/a) = 3.32 : (50)
£o=0
d=o0

The foregoing results are summarized in graphical form in sketch (n).

79T\
Prandt!- Glauerf—| e - \
e G \__—{Ackere?
—~ | X
— ot | - P 4 N
- T—o— o~ -~
~4_
Double — wedge airfoil, @= 0 |/ T
Guderley and Yoshihara Nonlinear theory
| | _ - L/near theory |
-3 -2 A 0 . /
(h) £ 2 I

Wings of vanisghing aspect ratio.- Two well-known results of linear
theory are that the lift-curve slopes of wings of finite aspect ratio
remain finite throughout the entire Mach number range and that the
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lift-curve slopes of wings of vanishing aspect ratio are independent of
Mech number. Therefore, equation (145) implies that (CL/a) must be
proportional to A either for wilngs of vanishing A\ in any flow, or
for any wing in a flow of vanishing £4:

(CL/“)Z = (CL/CL).L =R X const. (51)
K-)O E'o=c> N

The value of the constant must be determined for each plan form by
actually solving the equations of linear theory. For wings having trail-
ing edges which possess no cutouts extending forward of the most forward
station of maximum span, that is, triangular, rectangular, ellipticel,
etc., as well as certain swept-back wings, the value of the constant

is /2. (References 21, 22, 23, and 24 should be consulted for further
discussion of this point as well as for the values of the constant for
wings having cutouts in the trailing edge which violate the above stated
condition.)

It is seen from equation (51) that the lift-curve slopes of wings
in sonic flow decrease continuously in magnitude as the aspect ratio
diminishes towards zero. Since, in addition, the lift-curve slope given
by linear theory has its maximum value at M, = 1, it is conjectured that
the 1ift results of linear theory are a good approximation to those of
nonlinear theory not only for all wings at Mach numbers fer from unity
but also for all Mach numbers for wings of sufficiently small aspect
ratio.

Wings of finite aspect ratio.- At the present time no solutions of
the nonlinear theory are available for wings of finite aspect ratio.
However, from the remarks of the pre-
ceding paragraphs, it is apparent that g ¢
a curve representing the varlation
of CL/cc with A& for constant §g @
and % would have the e _following asymp-
totic properties: CL/m would increase £o=0
linearly with X_for small X and be ¢ a=0
independent of X for large . m =/
order to give a better idea of the o o= 0—_ ,if"
numerical values to be expected, a set =& //,ﬁ&-

/ Lo =/

b

of typical results of this type are
shown in sketch (1) for wings having 2 ,/// -
triangular plan forms and symmetrical 74

double-wedge airfoll sections. The :
supersonic results are those of

Stewart, Brown (references 28 and 29), .
and others. The subsonic results are 0
those calculated by De Young and Harper °m 2 a 4 i
(reference 30) using Weissinger's ' ‘

modified 1ifting line theory.

1

/) — Nonlinear theory
- l.lnear rlieory

L]
-

e e e s n et ———— i oy At s —_ e v e = = - e aw
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An interesting result of the foregoing remarks concerns the
influence of thickness ratio on the lift-curve slope at zero angle of

attack of wings in sonic flow.

ness ratio.

For wings of large aspect ratio, the
lift-curve slope is inversely proportional to the cube root of the thick-
For wings of small aspect ratio, the lift-curve slope is
independent of the thickness ratio.

Pitching Moment

The remarks on the pitching-moment characteristics of wings follow
in a menner exactly analogous to those just stated for the 1ift charac-

teristics.

Ticient Cp may be obtalined by simply replacing Cj,

with

The corresponding statements for the pitching-moment coef-

Cm and L

with M, Thus, the similarity rules for Cp corresponding to equa-
tions (U43) and (45) are the following, respectively:

(Cafa) = [(7+1)(t/c)1*® (Cu/a) = M (&, &, Q)

().

" J Tl

1

(52)

M; <V|M02_1| A>, (Ca/a) =7T—T—I- M, Qfl_g]'}si)

(53)

where once more M and hﬂz are different functions for subsonic and

supergonic flow.

of

(50), and (51) are, of course, different.

The only difference between the discussion
and Cy. is that the values of the constants of equations (L6),
Graphs of theoretical
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Pitching-moment characteristics for airfoils and for triangular wings
corresponding to the 1ift results of sketches (h) and (i) are shown in

sketches (j) and (k).
forward point of the wing.

Sometimes it is desired to
present pitching-moment character-
istics of wings in terms of center-
of-pressure position rather than
pitching-moment coefficient. Since-
the center-of-pressure position can
be expressed in terms of Cp and Cj,
by

Cm

CL

Xc.p.
c

(54)

the resulting expression for the
center-of-pressure position found
through application of equations (L43)
and (52) is

M(gof?i’“&‘)
L(¢o A,0)

The moment axis is taken to be through the most

3 —1 f
z —if
%N
5;;7 fo'—/ // - f =0 ;
a -;;Z///\h-oé’/ é:'O}
/ vz —ff——
Y 4
/
/ ~——— Nonlinear theory
——— Li/near theory
o . =
o 2 . P o
(k) A
= C.P. (&, &, Q) (55)

The corresponding relation for linear theory is

<ﬁ3;>l=c.P.l<JTna02_§iA>=c.P.z</ngK> (56)

Pressure Drag Due to Lift

The similarity rule for the pressure drag of inclined wings having
symmetrical airfoils is indicated by equation (26) to be the following
if the dependence on o and t/c is written in the same manner as in

equations (40) and (41):

_ + 0)5/3 ~ oA
° = (y+1)173 D (tos £, @)

(57)
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The portion of the drag due to 1ift is therefore

5/3 ~ o~ ~
'A%=CD'%O?%§%E px%,mm)-D(%,m0ﬂ=

2)5/3 ~
E:‘i‘l;l 3 Dna (50’ A, a)

Since Cp varies, in most cases, with the square of a for ét least

e small range of a surrounding zero (hypothesis (d)), it is advan-
tageous to consider the drag-rise ratio ACD/Q? rather than ACp alone,
thus, '

(58)

(t/c)5/®
(7+1)1/8

1
[(7+1)(t/c) 1M/
Therefore, drag-due-to-1ift data should be presented by plotting the.

variation with &4, A, and a of a generalized drag-rise ratio ACD/aa
defined as follows (the prime on Dp being dropped for simplicity):

A t ~ o
% DA (go: A, a) (59)

l o~y o
= ‘C_LE DA (EO,A,CI.) =

(a6p/a®) = [(7+1)(t/e)1*/® [ncp/a®] = Dy (b0, K, &) (60)

The actual presentation of the results of this three-parameter system
may be accomplished as described in the section on the 1lift of wings.

Of particular interest is the simplification resulting from presenting
only the values found at o = 0. The simplified similarity rule is then

(aCp/a®) = Dy (&g £ 0) (61)

a=0

For cases where linear theory applies, the following results hold:

@))ff lMt?-ll Dy (/™21 Ay '(Aog))f Jﬁj% (/IT,IK (62)

Wings of infinite aspect ratio.- For wings of infinite aspect ratio,
the functional relation of linear theory for the drag due to 1ift,
equation (62), reduces to

(B Fmer () -5 e




NACA TN 2726 ’ , 29

Solutions of the equations of linear theory show that the value of the
constant 1s zero for subsonic flow and four for supersonic flow about any
symmetrical airfoll. These results are valid at Mach numbers appreciably
less than or greater than unity but are invalid for Mach numbers near 1.

A similarity rule for the drag due to 1ift of a family of affinely
related symmetrical airfoils that is valid throughou@Mthe Mach number
range may be obtained from equation (60) by setting A = o,

'Af—g" =DA(§OJ ©, ?1") = dA (§O: ?f') . (6)4')

At a Mach number of unity, equation (64), for the drag due to 1lift,
reduces to the following:

S t

Acd) o (Ed' : ! o
/)= 09 (7)) = 0, =) (6
a,2§0=9 A (0,%) cﬁ;ﬂ [(7+1)(t/c) ]1/3dA < t/c) (65)

Equation (65), together with hypothesis (d), indicates that, at sonic
speed, the drag-rise ratio Acd/ae of airfoils of a single family varies
inversely as the cube root of the thickness ratio. For very large values
of d, the thickness ratio cannot have any effect on Acq; therefore,
Acg 1is proportional to the five-thirds power of the angle of attack.

If hypothesis (e) is accepted, cq/a® at infinitesimal angles of attack
is stationsry with Mach number at My = 1, that is,

d cg " d 3 '
& @ @ e
) a=0 ° d=0
My=1 £o=0
Wings of vanishing aspect ratip.- Since the drag due to 1ift
calculated by means of linear theory remains finite throughout the Mach
number range, it is assumed, as in the preceding sections on 1ift and
Pitching moment, that linear theory is capable of describing the drag-
due-to-1ift characteristics of wings of vanishing aspect ratio at all Mach

numbers. Therefore the following relations stemming from equation (62)
hold:

[}

—— Ag .

EEQ = -132 = K.x const. - (67)
%2 1 a2 2

A—>o0 €o=0 .

Solutions of the equations of linear theory show that the value of the
constant is /4 for all wings of small ./ |MZ - 1| A whose trailing
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edges possess no cutouts extending forward of the most forward station

of maximum span (i.e., triangular, rectangular, elliptical wings, etc.).
The quoted value of the constant corresponds to the development of the
full "leading-edge force." It is known that this force is oftentimes

not completely realized due to a local separation and subsequent reattach-
ment of the flow around the leading edge. If the leading-edge force is
nonexistent, the corresponding value for the constant is n/2.

Wings of finite aspect ratio.- At the present time no drag-due-to-
1ift results have been obtained from the nonlinear theory for wings of
either finite or infinite aspect ratio. The foregoing remarks, however,
are sufficient to determine that a curve representing the variation
of AE§ZZE with X for constant &, and & would increase linearly
with X for small (unless the degree of attainment of the leading-
edge force also depends on A) and become independent of X for large A.
The resulting curve would presumably have the same general appearance as
that shown in sketch (i) for Cl/a.

It may sometimes be desired to present drag-due-to-lift results in

terms of ACp/Ci2 or ACp/aCy, rather than ACp/a®. The similarity rules
for these quantities can be quickly deduced from the foregoing results.

Ames Aeronautical Laﬁoratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., March 6, 1952
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APPENDTX A
RELATION BETWEEN U, AND a* STATEMENTS

OF THE TRANSONIC-FLOW EQUATIONS

Equations (3), (7), (8), (10), and (12) were presented in the text
as being applicable to the study of transonic, as well as subsonic and
supersonic, flow about thin wings. These equations, repeated below as
equations (Al) through (A5), will be referred to as the U, statement of
the problem since the perturbation velocities are taken about the free-
stream velocity Ug. The perturbation potential @ is defined by

®=-Ux +? (A1)
The dirfferential equation is
(1 - My3) Pxx + Pyy + Pzz = U Gol Px Pxx (A2)
The boundhry conditions are
at X = -
@x) o = @y)o = @z)g = O (A3)
at the wing surface ‘
3Z> Al
(P2), o —Uocﬁ (Ak)
The pressure coefficient is given by
2 N
= - = () (A5)
% = " g, Px

In the a* statement of the transonic-flow equations (equations (13)
through (17) in the text), it is assumed that all velocities are only
slightly different from the critical speed of sound a¥%. The perturba-
tion potential is delined by

P = —a¥x + ¢ (A6)

and the resulting differential equation is

7+ 1

] \J
q)‘yy"' = a7 Px Pxx : (AT)
If the perturbation analysis is carried out in a completely consistent
manner the boundary conditions are:
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at x = -
t _ 2 a%* ' _ ~
@%), = M5 - 1) 5 (@) = (o) =0 (48)
at the wing surface ) ‘
Z,
(®,) =a* g-) (49)
2=0 x
and the pressure coefficient is given by
2
= -k [ - (%), ] _ (A10)

The relation between the U, and the a* statements can be deter-
mined directly in the following manner. The differential equations for
® and ¢ will be the same if

v _7r+1l 29 _ M2
a¥  Jx U, O (1 - M%)
or if
q>’=g_*cp_i§71_+_:l£03)x (A11)
0

The boundary conditions for @' corresponding to those stated for ¢ in
equations (A3) and (Al4) are

at x = ~m>

n

(q"x)o ax @), - a¥ (1 - Mo®) _ _ a¥* (1- Mo?3)

Uo 7 +1 7+ 1
(o) =25 (o) (01)_ = 2* (9) e
o) =2 @) =0, o) =8 () =0
Yo U, Yo ? z'o o Zo
at the wing surface
*
@) - & @) -ax(Z) (a13)
z=0 © z=0 X
Finally the pressure coefficient is given by
2 2 |u a* (1 - MQ-?)J
= = = -—— (P = = e— ._O. ' =
G’ =l =5 x5, [a* et Ty
(A1k)

2 o
- Lo - (9]

Comparison of the above equations with those given previously for
the completely consistent a¥ analysis reveals their identity. As far
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as obtaining the values of is concerned, therefore, the a* state-
ment of the problem may be regarded as a transformation of the more gen-
eral U, statement. The results so obtained are consequently valid
throughout the Mach number range. As is evident from equation (A11),
however, the local velocities, and consequently thé local Mach numbers,
found in the a* analysis are only correct when the free-stream Mach
number is unity. g
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" APPENDIX B

DERIVATION OF SIMILARITY RULES

The basic equations of linear theory and of nonlinear theory of
transonic flow mey be sumarized as follows. The differential equations
are:

5% 0 Linear -  (Bl)
2

%=
By 2

oz

(1 Mo’") 7 + 1 30 329
A =52 Nonlinear (B2)

The boundary conditions are:

(392 _ %}f) _ <g_q’>o (23)

at the wing surface
5 (D - st (1) (2

where the geometry of'the wing is given by
(z2/e) =7 £(x/e, y/b) (B5)

The pressure coefficient is given by

at x=-w

2 939
Cp = T U, ox (B6)

If the differential equations are now transformed into a system with
primed quantities and the proportionality or stretching factors are
denoted by s with appropriate subscripts such that

Xt = 84X, Yy = z! = 85,2, Q' =599, Uy'= syU,

(1 - Mg =sB./1- (y +1)' =r1'=spl=sp(¥+1)

(B7)
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equations (Bl) and (B2) become
0 Linear (B8)

(l-Moe) 62 Sya aacpr_l_ 8g 2 aeq)':
8 Bx'a 8, 0y2 Bg Oz
B S P Y Q

BysyS (7+1)' o' %!
p — T T Nonlinear (19)
sPscp U, ox' ox'¥

- Bimllarity is assured if @' satisfies the same differential equation
and boundary conditions as @. In order for the two flows to be the
came, therefore, the following relations must hold:

AN Linear (B10)
S+ S S 8
Z - - L EX =L 5 S
X pA x°U s 2/3F

NonTinear (B11)

where, for linear theory, X/K' is an arbitrary constant which can be
equated to SZB/SP if desired.

An immediate consequence of this transformation is that the wing
plan forms undergo an affine transformation such that the aspect ratios
of wings in similar flcw fields are related, according to both linear
and nonlinear theory, by

. 2
5 1 1 - M
A'=§§A=S—BA= T A (B12)

or by

J1-mD ar = V1 -m2a (B13)

Since ¢ is proportional to P, the boundary conditions at X = -
are automatically satisfied. The boundary conditions at the wing may be
given in either of two forms:

I SO R £ S
8z1> . > 5z Yo d(x/e) f(c, b> (B14)

Z=0

LA 1 o) ' X' = < >(Bl5)
<a?>‘ o eyt b') "o T a(x'/c') ot b
z!'=0

whence, if the two wings have the same ordimate-distribution functions,
that is, if f'(x'/et, y'/b') = f(x/c, y/b), the ordinate-a.m_plitude
parameters are related as follows:
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%‘ 1:'MM§2) T Linear (B16)
Tt = SQ _I_:SCPSBT___EEE 1-I~;02'3/2I:7+l ]‘I
5ys S = T Nonlinear(Bl
U8z SUSx 5 T [ l-Moa] ‘ (€ onlinear(B1T)
or as

,/(1' - My2)' W/ 1?\— Mo® Linear (B18)
N ! T

2\l
J(1 - w5 _ M1 - M Nonlinear(319)

(7 + D 13/3  — [(7 + 1)7]+/®

The relation between the pressure coefficients at corresponding
points on the wing surface is given by

( 39! sp 239 _
sst Ugy ox

z'—-o z=C

_?.‘_ Cp » Linear (B20)
Bi -
Sysx 2/3

1/3
C.p < > [ 7+l :, G Nonlinear (B21)
\ (7+1) ! .

or more completely by

Cp' [—%\%’ii, (1M arsZe L ]=

bf
7'\)% CP< —%Q‘NE—MOEA; %, %) Linear (B22)

%,{W le-—A_,;L}

[(r+1)t7]12/°

y+1 1/3<rr>2/‘3 f x X Nonlinear(B23)
[Fa 3 i &5 ¢

The foregoing relationships may b'e summarized in the following
statement: The similarity rule for the pressure coefficients on a
family of wings having their geometry given by

(z/c) =1£(x/c, y/b) (B2k)
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is

‘p =35 L<EJ o = A > Linear (B25)
P
= ——jf?fi—— J V1M . X 2{}
T (r+1)i/B W’J 1Mo *» & [ Nonlinear(B26)

The simllarity rules for the 1ift, pitching-moment, and drag coefficients
given by linear theory are

Cy, = - L (—-—-yﬂ— JIMZE A) Linear  (B2T)

C!ﬂz, == M'L < MiMg 2A ) Linear (B28)
CDL = % Dy (————-D-dg—l;\,rz, J1-M2 A ) Linear (B29)

The corresponding similarity rules given by nonlinear theory are

2/3 J/
°L = (7’1‘1)1/‘3 L {[T7+1 1)71]1/3’ 1-M92 A} Nonlinear(B30)

2/a ez
Ip— M 1Mo J1M, A} Nonlinear(B31)

(7+1)1/3 [(741) T]l/a

75/3 'M02 }_ ‘
Cp = 7+1) 73 D 7 +1) 71175 1 Nonlinear(B32)

It should be noted that the foreg01ng equations have been written for
subsonic flow where M,< 1. If M, > 1, the radical /14,2 should

be replaced with Afﬁ;2 - 1.

" In the linear-theory analysis, A has remained a completely arbitrary
coefficient to be selected as best suits the particular problem at hand.
For instance, the compressible-flow relationships between two wings having
identical pressure distributions are found by setting A = 1. If, on the

other hand, A is set equal to ./l-Moz, the thickness ratio, camber, and
angle of attack of related wings are identical. The greatest simplifi-
cation of the simllarity rules of linear theory occurs when A is set equal

to ;¢1-M52 /r since the number of paraemeters necessary to show the
results of linear theory is thereby decreased by one. This degree of

e e e et e A et et e i e e e



38 NACA TN 2726

arbitrariness in the similarity rules for linear theory is in contrast
to the case foor nonlinear transonic theory in which no undetermined
coefficient 1ike A is to be found.

For the present purpose of gaining a better understanding of tran-
sonic flows, the most advantageous choice for N\ is

1/8
_(r+1)
A= K—WS—— (B33)

because then the similarity rules for linear theory assume forms identical
to those for nonlinear transonic theory. This is important since it
implies that solutions of linear theory and of nonlinear transonic theory
can be expressed as functions of the same parameters and hence can both
be plotted on a single graph in terms of one set of parameters. The two
theories would, of course, yield two distinct curves on such a plot. The
curve for linear theory would be accepted as valid for purely subsonic
and purely supersonic flows but may or may not be valid in the transonic
range, as discussed previously. The curve for nonlinear transonic theory
is valid not only for transonic flows, but for subsonic and supersonic
small perturbation flows as well. As is evident from the derivation of
the basic equations, however, the results of the nonlinear transonic
theory should be considered to be of only equal accuracy to those of
linear theory in the definitely subsonic and supersonic regimes, despite
the fact that the solutions are much more difficult to obtain.




NACA TN 2726 39

APPENDIX C

SHOCK-WAVE RELATIONS-

Similarity rules were derived in appendix B through consideration
of the differential equation for the perturbation velocity potential .
Since the transonic equation involves the existence of a velocity poten-
tial, the derived similarity rules might be assumed limited to regions
of flow lying between discontinuities or shock waves. It will be shown
in the following, however, that the same basic parameters govern the
transition through weak normsl or oblique shocks so that the similarity
rules can be used to relate flows containing shock waves.

If the velocity immediately before the shock is designated by ﬁ
and the velocity components immediately behind the shock extending in
directions parallel and perpendicular to Ul are designated, respec-

regpectively, by U2 and ./Vé + W2 s the classical equation for the
shock polar provides that

-5 = 0.0z - a*® |

7.2 + W2 Ul-U2> — - (c1)
=02 - G0 + a*
7+l

Except for the important case of the bow wave in supersonic flow, U1

is not generally alined with the direction of the x axis, but is
inclined & small angle. With the resolution into components parallel to
the axes of the coordinate system and upon carrying out a small pertur-
bation analysis analogous to that performed in the derivation of equa-
tion (7), equation (Cl) provides the following relation between the
velocity components (potential gradients) immediately fore and aft of the

shock:
. \ 2 N2 2
(o) ()" Gram)" (rna)”
Py +P -
7+l< Xa X) ( q)x1> (c2)

This equation corresponds to the shock-polar curve for weak shock

waves inclined at any angle between that of normal shock waves and that
of the Mach lines.

The striking correspondence of equations (C2) and (7) make it almost
self evident that the shock relations satisfy the same similarity rules

e e e p e i A e
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as the differential equation for the perturbation velocity potential.
This can be verified quickly by transforming equation (c2) into a system
with primed quantities related to the original quantities by equa-

tion (BT), thus

2 t 2 2
SX 2 2 sy- . . 2 SZ 2
Pl 1- ! t - O 1 -— - ——— . - =
sg”sg” < MO> <q> *2 q>x1> ’ S <q>y:2 q)y’1> ' 8¢ % Za2 cp
s 1 (P 1+CPXI
st (r+ )< 2 Tt ) <<Px'-¢xl> (c3)

In order to assure that flows through shocks in the primed and unprimed
systems are similer, the following relations must hold:

8 S Sqp8
YB_y, g, 2ot (cb)
Sy 8, 8x8ysg 2

These are identical to the requirements already specified in equation (B1l)
. Tor similarity of the flows in the shock-free regions. Therefore it
follows that the similarity rules developed in appendix B on the basis of
the potential equation are, in fact, valid for flows containing shock
waves.
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APPENDIX D

SLOPE OF PRESSURE CURVE AT M, =1

Consider a transonic flow problem in which the free-stream Mach
number is slightly less than unity (Mg = 1 -€) where € is a small posi-
tive quantity. Since the object is only to determine the value of a
slope as ¢ approaches zero, there is no loss in accuracy introduced by

retalning only the leading powers of €. Ta this order, the differential
equation for @~ is '

7+1

2€ Box * Wyt V5= i) PR Okx (D1)
The boundary condi’c_icsns .a:re:
at X = -
y (@9 = (95), = (97) = 0 & (v2)

at the wing surface
1 Cr - 0 o fx. v
e e D) :
ao(1-€) §=o d(x/c) b (03)
The pressure coefficient is given by
2 -
% =" a(1-€) (q)x%=o (Dk)

If the Mach number of the flow is now increased to M‘c'; =1+ €,
keeping a, constant, the differential equation for (p+ is

+ + - 78
-2€ P+ q);'y"' Pzz = ag(1+€) Px Prx (D5)

hence ¢¥+and @— both satisfy the same equation provided

741 t 4 o0e = 2+ - D6 |
So(mrey Pt 2 T o) & 2 (D6)
3 or if
ot = Lie P - heag % + const. (D7)
1-€ 7+1 :

- .- —— i vt e o = b "
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Consideration of the boundary conditions at the wing shows that the
wing geometry is preserved by the new potential since

+

T @%) =
Z=0

o * (& 8 )

1 -y o 9 -(% ¥
aes T2l T 3/e) | &y )

Z=0

At x = -=, however, an alteration of the boundary conditions is
observed since the velocity perturbations no longer vanish but take on
2 uniform value given by

(cp+) - - hea o - - h(M-S—l)&Q
x70 741 1

@), = @), =0 (D9)

It can be shown that such a velocity perburbation is just that which
would exist if there’'were a normal shock wave of infinite lateral extent
standing infinitely far ahead of the wing. (See equation (C2).) If it
can be assumed that such a shock is actually present, the pressure coef-
ficient in 31ightly supersonic flow is related to that in slightly sub-
sonic flow in the following manner:

C+ - 8€ - 8¢
P " a Zl+e) (CPx) aoi -6 (q) ) Ty =Cp 7+1 (p10)
. . \
The slope of the pressure curve at M, =1 1is therefore
acy o - o5 _
= | = 1lim = D11
<dMo> €—>0 2¢ J7+L ( )
=1

the value originally given by Liepmann and Bryson (reference 15).

It 1s to be emphasized that it is necessary to assume the presence
of the velocity field at X = -w given by equation (D9), due presumably
to a mormal shock wave, in both the present derivation and those of
references 8 and 15. Whether or not this is a permissible assumption for
any given case still remains an unanswered question. Intuitive consider-
ations suggest that the results are probably applicable to symmetrical
airfoils at zero or infinitesimal angles of attack but not to airfoils at
Jarger angles of attack or to wings of finite span.




NACA TN 2726 43

l.

REFERENCES

Oswatitsch, K., and Wieghardt, K.: Theoretische Untersuchungen
Uber stationare Potential Stromungen und Grenzschichten bei
hohen Geschwindigkeiten. Lilienthal-Gesellschaft fur
Luftfahrtforschung, Bericht S 13/1d4, 1942, S. 7-24. (Also
available as NACA TM 1189, 1948)

Busemann, A., and Guderley, K. Gottfried: The Problem of Drag at
High Subsonic Speeds. British Ministry of Aircraft Production,
Volkenrode, Rept. and Trans. No. 184, March 1947.

Guderley, K. Gottfried: Considerations of the Structure of Mixed
Subsonic - Supersonic Flow Patterns. Tech. Rept. F-TR-2168-ND,
AAF, Air Materiel Command, Wright Field, 1947.

Guderley, K. Gottfried: On the Transition from a Transonic
Potential Flow to a Flow with Shocks. Tech. Rept. F-TR-2160-ND,
AAF, Air Materiel Command, Wright Field, August 1947.

.von Ka&maﬁ, Theodore: Supersonic Aerodynamics - Principles and

Applications. Jour. Aero. Sci., vol. 14, no. 7, July 19LT7,
Pp. 373-%09.

von Karmeh, Theodore: The Similarity Law of Transonic Flow. Jour.
Math. and Physics, vol. XXVI, no. 3, Oct. 1947, pp. 182-190.

Guderley, Gottfried, and Yoshihara, Hideo: The Flow Over a Wedge
Profile at Mach Number 1. Jour. Aero. Sei., vol. 17, no. 11,

Nov. 1950, pp. 723-735.

Vincenti, Walter G., and Wagoner, Cleo B.: Transonic Flow Past a
Wedge Profile With Detached Bow Wave - General Analytical Method
and Final Calculated Results. NACA TN 2339, 1951.

Vincenti, Walter G., and Wagoner, Cleo B.: Transonic Flow Past a
Wedge Profile With Detached Bow Wave - Details of Analysis.
NACA TN 2588, 1951.

Cole, Julian D.: Drag of Finite Wedge at High Subsonic Speeds.
Jour. Math. end Physics, vol. 30, no. 2, July 1951, pp. 79-93.

Trilling, Leon: Transonic Flow Past a Wedge at Zero Angle of Attack.
Paper presented at American Physical Society annual meeting,
New York, Jan. 1952.

e e o .~ i — ~m mmra—— e~ =



bl

12.

13.

l’""

15.

16.

1T7.

18.

19.

22.

23.

NACA TN 2726

Oswatitsch, K.: Die Geschwindigkeitsverteilung bie lokalen
Uberschallgebieten an flachen Profilen. Zeitschrift fur
Angewendte Mathematik und Mechanik, Bd. 30, Nr. 1/2,

Jan. /Feb. 1950, S.17~2k.

Oswatitsch, K.: Die Geschwindigkeitsverteilung an symmetrischen
Profilen beim Auftreten lokalen Uberschallgebiete. Acta Physicae
Austriaca, Bd. 4, Nr. 2-3, Dec. 1950, S.228-271.

Gullstrand, Tore R.: The Flow Over Symmetrical Aerofolls Without
Incidence in the Lower Transonic Range. KTH Aero TN 20, Royal
Institute of Technology, Stockholm, Sweden, 1951.

Liepmann, H. W., and Bryson, A. E. Jr.: Transonic Flow Past Wedge
Sections. Jour. Aero. Sci., vol. 17, no. 12, Dec. 1950,
PP TH5-T55.

Bryson, Arthur Earl, Jr.: An Experimental Investigetion of
Transonic Flow Past Two-Dimensioneal Wedge and Circular-Arc
Sections Using a Mach-Zehnder Interferometer. NACA TN 2560, 1951.

Kaplan, Carl: On Similarity Rules for Transonic Flows.
NACA TN 1527, 1948.

Spreiter, John R.: Similarity Laws for Transonic Flow About Wings
of Finite Span. NACA TN 2273, 1951. .

Berndt, S. B.: Similarity Laws for Transonic Flow Around Wings
of Finite Aspect Ratio. KTH Aero TN 14, Royal Inst. Tech.,
Stockholm, Sweden, 1950.

Oswatitech, XK., and Berndt, S. B.: Aerodyﬁamic Similarity at
Axisymmetric Transonic Flow Around Slender Bodies. KTH Aero TN 15,
Royal Inst. Tech., Stockholm, Sweden, 1950.

Heaslet, Max. A., Lomax, Harvard, and Spreiter, John R.: Linearized
Compressible-Flow Theory for Sonte Flight Speeds.
NACA Rep. 956, 1950. (Formerly NACA TN 182L4)

Jones, Robert T.: Properties of Low-Aspect Ratio Pointed Wings at
Speeds Below and Above the Speed of Sound. NACA Rep. 835, 1946.
(Formerly NACA TN 1032)

- \

Mangler, K. W.: Calculation of the Pressure Distribution over a
Wing at Sonic Speeds. RAE Rep. No. Aero. 2439 (British),
Sept. 1951.




b5

NACA TN 2726

2k.

25.

26.

28.

30.

Lomax, Harvard and Heaslet, Max. A.: Linearized Lifting-Surface
Theory for Swept-Back Wings with Slender Plan Forms.

NACA TN 1992, 1949.

Ackeret, J.: Luftkdfte auf Fliigel, die mit grossererals
Schallgeschwindigkeit bewegt werden: Zeitschrift fur Flugtechik

und Motorluftschiffabrt, Feb. 1k, 1925, S.72-Tk. (Also as
NACA ™ 317, 1925)

Puckett, Allen E.: Supersonic Wave Drag of Thin Airfoils. dJour.
Aero. Sci., vol. 13, no. 9, Sept. 1946, pp. b75-48hL.

Guderley, Gottfried, and Yoshihara, Hideo: Unsymmetrical Flow
Patterns at Mach Number One. Air Force, Air Materiel Command,

Tech. Rep. 6683.

'Stewart, H. J.: The Lift of a Delta Wing at Supersonic Speeds.

Quart. App. Math., vol. IV, no. 3, Oct. 1946, pp. 246-254.

Brown, Clinton E.: . Theoretical Lift and.Drag of Thin Triangular
Wings at Supersonic Speeds. NACA Rep. No. 839, 1946 (Formerly

NACA TN 1183)

De Young, John, and Harper, Charles W.: Theoretical Symmetric
Span Loading at Subsonic Speeds for Wings Having Arbitrary
Plan Form. NACA Rep. No. 921, 1948.

NACA-Langley - 6-25-52 - 1000

e et e i e o A e T i e

e - e e = > i rWR—— s S S+ g S T



